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THEORETICAL INVESTIGATION OF FLUTTER OF TWO-DIMENSIONAL FLAT PANELS WITH 
ONE SURFACE EXPOSED TO SUPERSONIC POTENTIAL FLOW 1 

By HERBERT C. NELSON and HERBERT J. CIJNNINGHAM 

SUMMARY 

A Rayleigh type a,nalysi.s in~uol~uin.~t choses~ modes of the 
panel as decgrees ?f freedom is used to trea,t th,e #utter of a two- 
di,nensional Jlat panel supported at its leading and 2raibin.q 
edges and subjected to a, mitldbe-piane tensile -force. The 
panel has a supersonic stren,m paSssing 011~7’ its upper su.rfnce 
and still air below. The tWtVd~Jl~ nm ic jorces due to the S?I])PI’- 
sonic strea,m a,re obtained .from the theor?/ for linenriretl 
f?uo-dirn.enniona,l unstea~rly jaw nntl the jorres due to the still 
air alv obta,ined -from acoustical theory. 

The problnm of panel flultcr cmbraccs so many possible 
fael,ors n.s to tliscourn,ge general t,reat,menl,, and previous 
paprrs 011 t.hr subjrc*l, (for esn~mplc, rrfs. 1 1.0 7) have em- 
ployed various simplifyin g assumpt~ions in order to obtain 
specific, solutions lo what might perhaps be eonsidrred 
(I iff’erenl~ pleases of t.11~ pi~l~lrm. I II all I Iir wfrrrnrrs rited, 
I II~ mn.iil n.ssumplioir mn.tlr is 1 ht n. pn.nrl n.rd t IIr flow owl 
il arc two-tli1rlc.llsioilrl.l. Oi ttrr n.ssmnpliolls common to 
ttlv l*c~fcTc~lrcY~ plpc'l's 11.1’1’ I1121 1 snin.ll-tlt~ll~c*l ion plnl c I I~eor~ 
witI lirlcwizcvl Ilow 1 tlcwl*y may Iw uwtl. 

In order to study the qflect of increosin!g the n,utn her of rnotles 
in th,e ancllysis, two nntl then Jo 1l.r nl0rle.s (Ire etn ployetl. 7 ‘h e 
,n,otles used are the jirst .four naturn. modes of the pri PI iir r~ 
0acuurn with no tensile .force actin!j. 7%e an al!y.sis in CIIL~IP.Y 
these cuariables: Mach number, structural rlampin!g, tensile 

.fnrce, density ?f the still air, a,nd edge jixity (clamped and 
pin.n.ed). For certain. combinations ?f these ,uariables, sta,bilify 
bou,n.daries a,re obtained which can be used to deter,n.ine the 
panel t.hickness required to prerent$utter.for’ any pnnel ma.terial 
albd altitude. 

In contrast to some pe0ious panel-Jlutter inve.stiqa.ti0n.s. 
the results ?f the presen.t analysis Rhow that suficien tby thick 
panels are JEutter -free -for the Mach numbers treated and sugpst 
that this is true throucghout the supersonic speed rancge. 

A comparison. ?f rexults *from the pre.srnt theory -for jlat 
panels and &from a criterion, delleloped by R. I’. Isaacs for the 
Rtatic stability of buckled panels is made with a.few exper~!mental 
results on $at and buckled panels clamped at leadin.!/ and 
trailin.fj edges. 

INTRODUCTION 

The flutter of thin metal plates or panels, such as com- 
pose the covering or skin of missiles aiicl other craft intcndccl 
for high-speed flight, has recently become of increased COII- 

tern. Such panels may be init.ially fla.t or curvecl and may 
be small or fairly large in aspect ratio. In addition, they 
may be prest.ressed and will probably become warped in 
flight by aerodynamic heating. If one or more of the 
panels on a particular configuration are vibrating, the 
basic structure supporting them can usually be considered 
rigid. The fixity at the edges of the panels ranges between 
clamped and pinned, depending 011 the construction. Some 
preliminary experimentation and analytical work suggests 
that this t,ypc of instability is of concern only at, supersonic 
speeds. 

.Il~~f~~r~c~f~ws 1 IO 4 es0niille IIIP ease ol :I. pat~el I~rrc~ldrtl Iby n 
c~~t1sl21.111 stiorlrrlitig 21.1icl I~rltl 11.1 its Ir~~~li~~g :t.tltl Iixiliirg r(lgrs, 
wit Ii 21, suprrsoflic* sl twin ovrr its rtpprr s~~i*fwr rr.ntl no prr- 
1 tirht iori prrssu1~~3 oil its lowrr srirfaw. Ill l*c~fclY~llcY~ 1 

slratly-slatr air fours and in refrrrnc~r 2 quasi-stationary ail 
forrrs, which irrcludr t tlr first ordrr of the frrqurncy of oscil- 
1n1 ion, are usrtl. Bot II t hcsc refrrrncrs ronsidrr the dynamic 
stability of thr bucklrtl panel. Reference 3 and tllr mow rs- 
haustive rcfrrrncr 4 esaniinc the static stabilit>- of thr 
bricl~lrd panel and proposr t haf motion (Hut trr) is the rrsult 
whrn static rquilibrium is not possihlr. Rrfrrenrc 5 n~ltl a 

srction of refrrcncr 2 trrat the case of a flat panel pinned at 
its leading and trailing rdgcs. Rrfcrrnce 5 usrs rsaet linrar- 
izetl u~~stcv~tl~ aerotl~nami~ forces and therefore, in contrast 
to rcferrnec 2, imposes no limitations on the order of the fre- 
qllt‘llc~-. Iii rrfcrcncrs 1, 2, and 5 a geiicralizctl-coortlilla.tc~ 
approach involving rl~osru motlrs of tlir pnnrl as tlrgrrrs of 
freedom is employrd. Rrfcrenrr 6, 011 tllr other hand, indi- 
csnt,rs how thr problrm of a vibrating membrane in a super- 
sonic stream can br treated by mrans of Laplacr transforms 
and suggrsts that similar trratmrnt can be given to the plate 
problem. Reference 7 trcat,s tlw casr of a two-climensional 
panrl 011 many equally spaced simple supports with compres- 
siblr air flowing OWI’ the upper surfacr and drad air below 
the panri, and the results indicate that t hc possible panel 
instabilities are divergence for subsonic flow and flutter for 
supersonic flow. Some questionablr features of the results 
obtained in refcrrnces 2, 5, and 7 are rxamined in the section 
rntitled “Results and Discussion” in the prrsent report. 

A Rayleigh type flutter analysis is developed herein by 
means of Galerkin’s process for a two-dimensional flat panel 
hrld in some manner at its leading and trailing edges and 
acted on by a middle-plane or axial force (which, in the case 
of tension, introduces a restoring force similar to that for the 
mrmbrane). The upper surfn#ce of t,he panrl is subjected to 

1 Supersedes NACA TechhI Note 3465 by IIwbert C. N&m nnd Ikrbert J. Cunninghnm, 10.55. 
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a supersonic strea,m and the lower surface to an unconfined 
mass of stationary compressible air. The normal modes of 
the panel with no middle-plane force act,ing are used as de- 
grees of freedom in the analysis. As in reference 5, exact 
linearized unsteady aerodynamic forces are employed. In 
the reference paper the integrals yielding these forces are 
evaluated analytically. In the present report these integrals 
are evaluated numerically. 

Numrriral rrsults arc prrscnt,rd in ordrr to csaminr somr 
rfTrcts of including two nut1 tlwi four modes in thr analysis 
ant1 to tlrtrrmiur rflrrts of 11ac*l1 numhr, tlrllsity of 11111 
supersoi~ic stream, pn.1~:~1 mass nirtl stiffness, etlg~ kit\- (to 
somcl ostc~iit), sti*rrc~tural tla.mpiilg, :rsial load, rl.rltI tIritsit>. 01 
thr still air bc>low t Iiv pniicll. 1 II apprirtlis 11 aii altrruat ivr 
solution by mrans of l~aplacr t railsforms is tlcvcloprtl for t llr 
platr pi*oblcni just tlesc~ribrtl. No nun1cricn.l 1~~sr11ts arc ol)- 
lainctl by tliis mctl hotI, II~w~~PI~. 

SYMBOLS 

n speed of sound in undisturbed mrdium 
il,,,,,,R,,,,,(‘,,,, strurtural and arrodynamir intrgrals dr- 

finrd aftrr rquation (13) 
panrl chord 

ET3 
local flrsural stiffn.ess, --__- 

12(1--Z) 
Young’s modulus of rlastirity of panrl 

material 
t rnsion paramrtrr, F/c2mAcd12 
fun.rtions drfi.nrd in equation (24) 
rstrrnal forcr per rmit width scting in 

midplanr of panrl (trnsilr forcr posi- 
t iw) 

strudural damping rorffirirnt 
matrix rlrmrn ts drfinrd in rquation (13) 
IIanlirl function of srcond kind, of zero 

order, (not:it ion of ref. 1 S) 
arrodynamir intrgrnls drfinrd after ~qr~a- 

tion (2X) 
Rrssrl func%iolH of ot~drr 1~ d first and 

srrond kind, rrsprrt i\-rly, (notation of 
wf. 18) 

rrduccd frcqurncy, cw/2 7 . 
stiflnrss parsmrtrr (rrdurrd first natural 

frequrncy) , 1x0,/2 c T 
rigcnvalues drfin-d aftrr rquations (16) 

and (1’7) a.nd girrn for first four panrl 
modrs in tablr I 

arrodynamic functions drfinrd sftrr rqua- 
lion (21) 

nrrndgnamic functions drfinrd after rqun- 
lion (T316) 

2) (TO 

lb,(“) 

pm ,jh 

I’,,(.r),T,,(.r),F,,(.r) 

panel mass per unit surface area, UT 
Mach number, U/a 
coefficients in mode-shape equati0n.s (16) 

and (17), given for first four panel 
modes in table I 

net perturbation pressure, positive down- 
ward 

pressure coefficient associated with mode 
shapr Z,, drfinrd in rquation (20) 

upprr- and lowrr-surfacr contributions to 
prrt nrbation prrssurr, rrsprrtivrly 

pwssurw in undist uhrd suprrsonir st rcnin 
n.nd still-air region, rc9prcltivc9.y 

c~oniponrnt s of 23,,(x) dc&c~l after (‘qua,- 
tion (22) 

1 

vrlwi t.y of suprrsonic~ st,rcam 
roordinatrs drfinrd in figurr 1 
vrrtira.1 displacrmrnt of panrl 
fIuttrr modr shapr 
ntli natural mode shapr for paw1 \-ihmting 

in vacua 
panrl-air mass ratio, m,/pc 
Poisson’s ratio 
drnsitics in undisturbed supersonic stream 

and still-air region, resprrtiwly 
drnsity of panrl material 
local thickness of pnnrl 
disturbarwr-velocjty potrntial 
frrqurncy of oscillation 
frrquency associated with mode shape Z, 
frrqurncy paramctrr, 2k:\/2//32 

frequency ratio squared 2 
(>I 

j cxccpt. io 

flutter ralrulations wlwrc Q= 2 
0 

2 w (1 fig) 

square matrix 
column matris 

upper-surfarc rontributiou 
low-cl.-surfacr coutributinn 

Primrs denote diffrrrntiatinn with rrsprrt to tlw argumrnt. 

ANALYSIS 

STATEMENT OF PROBLEM 

A thin isot topic, two-dimensional plate (bram) of con- 
stant tliirkiirss, as shown in figure I, is considrrrtl hrreiii. 
Thr plate is undrrgoiiig simple harmonic motion mid is 
artrd on by a mitldlr-planr or axial forcr II’ (tonsion 01 
romprcssioii) ; its uppri* surfarc is sul~jrctrtl to a suprrsonic 
strrn.in of vrlncity 17, prcssurr I)~, n.iitl tlrnsity p, n.nd its 
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z, a?z 
a,;“+m.A ~f~-k’~~~S-(~,,-,,,,)+l,(.r,t)=o (1) 

wltcr(~, itt t 11~1 prc30111 cast\, tlic~ v~*tic~al tlisl,lnc~rtnrttt of 11~ 
plate s(.r,l) tna.p bc c~sprcssctl as Z(s)piwl, w is the c*itx:rtlat 
frequcnc.v of oscillation, jj(.r,t) is the ttct prrturt~atioti pt~s- 
sure (positive downward) arising from thcl motiott of tIic* 
plate, 7r1.~ is the plate mass per unit surfaw arcn, ntttl the 
local flcsural stiffttcss D is givc>tt by W/12(1 -9). ITor the 
case where p(x,f) =O, cquatioii (1) may hr obtainctl, wit11 
appropriate cltattgcs in ttotation, from t*c>ferc>ttcc 8. 

In the rcmaitting tlcvclopmtnl the c.otistatlt-p~cssttr(, 
term pm --y,, of clquatiott (I) is consitlrrc~tl to bc zero. l’liis 
in 110 way afl’ccts the g:rttcrality of tlic t~ults for tltcb oscil- 
latitig plntc, since irtchtsiott of t tic ~ottstant-prc~ssulc term 
as noitix~t~o ~~ultl t~ult 01ily itt atItling n particular solution 
wlticli rcprt5c’r1 (s :I. S(:I t ic* v(~t,t icxl tltsfl(*ctiott. 111 atltliliott, 
the (9ot*diti:tt(~ .I’ of quat iota (1) is tlivitlcltl by tltc plate 
c:tiortl c ancl ltcttc~cfot~ttt is cmployc~l itt this ttotttlitt~t~ttsioi~nl 
S(‘I1S(‘. ‘I’ltus, cquat ion (1 ) mull iplictl 1)~ ~-*a’ bcc*omc3 

whcrc the primes tlcuotc tlif~crctitiatioti with rcspc~ct to 
the argument x. 

In orclcr to obtain a specific solution of equation (2), 
four boundary conditions are required. The plate is con- 
siclered to be belt1 at its leading ant1 trailing edges as shown 
in figure 1, aucl this assumption lcads to the conditions for 
pinnctl ctlges : 

z(o)=z(l)=z”(o)=z”(l)=o (3) 

In a later scctiott of the atialysis thc l~ott~ttla.r~-v~~l~t~~ prob- 
lems, as c5cmplific~tl I)\- cquatioits (2) a.11~1 (X) or (2) at~tl 
(4), arc solvctl 1)~ Galctkiu’s mctltotl. Also cottsitlcrctl iti 

appendix A are the solutions to these problems by means 
of Laplace transforms. 

NET PERTURBATION PRESSURE p(x.l) 

The net pressure p(z,t), as mentioned previously, arises 
from the oscillatory motion of tho plate. It is this pressure 
which clamps, or in the cast of fluttrr~sustains, the oscillation. 
The pressure on t,he upper surface is obtained from the 
theory for linearized unsteacly supersonic flow ancl the 
pressure on t,he lower surface from acoustical theory. Thr 
pcrt,urbatiott prcssuro in terms of the pressures p,‘ on the 
upper surface am1 p1 on the lower surface is 

p(.r:,f) =]‘,,-]‘I (5) 
whcrc 

w 

alit1 
NJ, 

pc=po at (7) 

Frotn rcfercttcc 9 the velocity potc~tttial for tltc uppot* surfacc~ 
(~1 be obtainctl in the form 

13asc~l oti rcfcrc~ice 10, the vcl0cit.y potc~titial for tlic lowct. 
sitrfacc (31i lw ol~tnitictl, n.s showtt irt nppwtlis 13, itt 1110 form 

SOLUTION BY GALERKIN’S METHOI) 

Outline of method.-The l)outttlnt.?--vulu(l pt~~blrtns eo~t- 
sitlcrrtl carlicr (cqs. (2) ant1 (3) for the pinnetl-edge plate 
ant1 equations (2) ant1 (4) for the clamped-etlgc plate) are 
now solved by means of Galerkitt’s methocl. (A tletailctl 
account of Galctkin’s mtt.ltott may be fount1 in ref. 11.) As 
a first step, the Auttcr mode shape Z(z) is approsimatett b)- 
a linear combinatiott of tltc form 

I 
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shapes. The shapes 2, satisfy the pinned-edge or clamped- 
edge boundary conditions (2, replacing 2 in eqs. (3) and (4)) 
and the differential equation 

11 7 %,,“r’-~,,27n.,,%,,=0 

where w, is the frequency of oscillation for which Z,, is the 
mode shape. 

The rema,indcr of the C;alerkitl process for solving the 
aforemcntionecl bol~r~d:u:\--\~all~(~ prol~l~~nis cuollsists of clctcr- 
mining thr cocfficictrts u,, of cqualioii (10) iu lhc following 
manner: Substitute clquatioil (10) itlt o equatiol~ (2), rcplacc~ 

the terme 7 “” 
c4 J I, by w,,%~,Z,, iu :ic~~o~~da~~~~~ with equatioli 

(ll), multiply by orie of the mode shapes Z,l, iiitcgratr lhr 
result from s=O to r= 1, and equate to zero. When ‘12 is 
made 1, 2, . . . N in succession, N linear equations arc 
obtained which determine the unknowns a,. ‘I’l~csc cqua- 
tions can be written in the form 

. . . . . . 

i 

O> 

0 
.I 

0 J 

(12) 

(13) 

The matrix elements are given b>. 

G ,,I,, =p{ Am---~ [(;:)k,,+.f&n]} -(:,,n 

where 

and whc~rc ~l,~(.r) is the pressure y(.r,l), obtained from equa- 
tions (5) to (9) with Z replaced by Z,, multiplied b> 
eC’W’/pcw’. In equation (13) w1 a.nd w,? are the first and the 
,mth natural frequency, respectiveI>-, of the plate with no 
axia.1 force acting. 

Flutter determinant.-The flutter condition or condition 
of harmonic vibratiotl, which is given b.v tbc nontrivial 
solution for the cocfhcicnts a,, is obtained from equation (12) 
by setting the dctcrminant of the matrix G,,,, equal to zero. 

Thus the flutter condition may be expressed in the form 

6, 6, . . . G,N 

Gzl Gz, . . . Gmr 
=o (14) 

. . . . . . 

/G:,,I~~,... 7NN c I 

Remarks on alternative procedure.-The procedure from 
eclua,tion (1 1) to rquatiolt (13) is, ill getleral, not. the most 
a.c~urn.tc~ t1u11 could I)c followed for values of F ot.her than 
%~‘1’0. A gcllcl~il~lly 11101’~! wcurutc proccclurc wollltl h to USI?, 

iilstratl of equatioli (1 I), 111~1 tliffcreutial equatioli for tlic 
panel with tcusiou: 

II 7 %,(“” -,,,h,Z,,-4 %,L”=o 
C’ (15) 

Whcu cquatiou (15) is solved, subject to the appropriate 
boundary conditions, the frequencies w,, arc found to be 
functions of II’ for both pinned and clamped edges, but the 
mode shapes Z,& do not vary with II’ for pinnccl edges. The 
use of equation (15) rather than equation (11) would mean 
that in equation (13) the term .fBNLI1 would not appear and 
the frequencies and mode shapes would bc those that satisfy 
equation (15). 

Equation (11) rather than equation (15) has been used 
herein for the following reasons: For pinned-edge panels 
there is no difference in the mode shapes or in the final 
numerical fiutter results; for clamped-edge panels the deter- 
mination of the values of 7,) and w,, that satisfy equation 
(15) is laborious and must, bc carried out for every desired 
vahc of P’. Elimination of the term J/1,,,,,, from the matrix 
clrmcuts, tlirougli use of equatiou (15), does not, compensate 
for the labor of dctcrmining the natural frequencies and mode 
shapes as functious of /*‘. The differcuces in fiual numerical 
flutter results for the clamped-etlgc panel approach zero as 
the uumbcr of modes in the analysis is increased and are 
expected to bc small tv~u when only a few modes arc used. 

EVALUATION OF TERMS IN FLUTTER DETERMINANT 

Structural integrals A,, and B,, and frequencies w,.- 
Consideration will now be given to the evaluation of the 
mode-shape integrals a,ntl frequencies in the elements of 
equation (15). The mode shapes 7, and associat,ed natural 
frequencies w,~ obtained from equation (12) are: 
For t.he pinnrd-edge plate, 

%,,= N, sin K,,.r 
7 

(1W 
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where K, is obtained from the frequency equation 

sin K,=O 

For tho clamped-edge plate, 

Z,L=N1[cos K,s-cash K,‘a:+N2(sin K,z-sinh K,s)] 1 

1’ (17) 

where K,L is obtained from the frequency equation 

cos K,A cash K,z = 1 

In equations (16) and (17) the factor N1 is used to produce 
unit deflection at the center of the plate (x=0.5) for modes 
that are symmetric about the center and at the point of 
maximum deflection between the leading edge (x=0) and 
the cent.cr of the plate for modes that are antisymmetric 
about the center. The factor N2 in equation (17) is est,ab- 
lishcd by the boundary condition requiring zero deflection 
at x=1 and is expressed by 

N2=--“ps Kn-cyst1 K, 
stn K,-smh K,L (18) 

The quantities We, w,/w,, A,,L,h, and B,,,, required in equa- 
tion (14) can be dotermined directly from equations (16) or 
(17). First, however, values must be established for N1 and 
K, in the case of the pinned-etlgc plate and for N,, N2, and 
K,, in the case of the clamped-cdgc pln.tc. Table I includes 
values of all these qua.iititits for tlic first four modes of 
vibration. 

The values for fl,,‘,, shown in table I arc 2~~1’0 wlicn m#n 
because of the orthogonnlity of the mode shapes %,L of equa- 
tions (16) and (17). For the pinned-cdgr cast the slopes 

TABLE I.-MODE-SHAPE FACTORS, EIGENVALUES, 
FREQUENCY RATIOS, AND STRUCTURAL INTEGRALS 

FOR FIRST FOUR NORMAL MODES 

~A,“=z3,.=o (Tn# JO 

(b) Clamped-edge plate b. 0 

I I 
Mode, Nl N? 

I 
Ii, O./W 

n 
-__ - --__-- 

f -0.629694 -. 66266 --I.906778 -0. 98250 4.730 7.853204625 a. 7566 
3 7199645 -.99997 10.99569784 5.404 
4 -: 6612(x174 -1.00000145 14.13716549 8. Qa3 

A,,, B.. 

~-- 

0. a96 4.88 
,440 21.2 

,596 ,432 -E:: 

Z,&’ of the mode shapes are also orthogonal and, consequently, 
B,, is zero when m#n. For the clamped-edge cast, oven 
though the slopes 2, arc not orthogonal, the intcgrancl of 
B rrc 11 is antisymmetric about x=0.5 when m and n are not 
both even or both odd and, consequently, B,,h,l is zero wbcn 
‘mfn except for B13, B3,, Bz4, and B,, (for the first four 
modes). 

Aerodynamic integrals Cm,.-The remaining term in t.he 
elements of equation (14) that requires evaluation is the 
integral 

C:“,S= I .’ Z,,Lp,,(x)tz.c (1% ” 
As mcntiorictl previously, ~j,~(,r’) is the prcssurc ~(.r,t), obtained 
from cquatiotis (5) to (9) with % rcplncctl by %,<, multiplied 
by e-‘“‘/pew’. The quantity p,(z) is therefore given by 

where the contributions from the upper and lower surfaces of the plate are designated by subscripts u and Z, respectively. 
Upon elimination of the derivatives in the intcgrancls of the upper-surface contribution through integration by parts, 
performance of thr indicated clifforcntiation of the second integral, and extraction of the singularity at, 6=x in the 
Hank1 function of t.ltr lower-surfncc contribution, equation (20) ma.y bc written in the form 

I - 
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m)=;+‘; +y=O.57721 fi (14~ulcr’S c~ollst:~lll) 

The quantities J,, tlt~tl l?,, arr I Iir Brswl fuuctioiis of ortlrr 
p, of the first and sc~~iitl kiiitl, rrspc~c‘tivrly. 

For couv(lni(~n(+(~ p,,(x) is consitlcrctl in tlirc~r parts, iiamc~ly, 

/),,(~)=Z’,,(S)+~,,(.r)+~~~(.r) (22) 

\I-11cw 

Hrncc~, rquation (19) may bc put in the form 

c”~,=I,,,,~+~“~,,+~*,, 

whcrc 

I,,, ,I = 
.I 

” %,,, I’,, (.r)dx 
0 

7 ,,,,, = 
J 

: ’ %,,,I’, (.r) t1.r 

z 

J 
-’ 1, ,, = Z,,,F,$ (.r)tlx 
0 

(23) 

Thtl first integral I,,,,, represents the c+fcc*t of the supersonic 
strram passiug over the> upper surface of the plate; the other 
two integrals rc~prc~sc~iit thck c3c~at of tlic still air ht>low the 
plate. 

be zero and the integra!s fmn and 2, are omitted. In 
references 1 and 2 the aerodynamic effects are accounted for 
as if the integral I,, has been expanded as a power series in 
the frequency of oscillation; reference 1 retains only the 
st.catly-slate or ztro-order frcqurncy term and rcferciic*e 2 
adds t.he first-order frequency krm. Ill rcfrrenW 5, 011 t.11c 
ot lier lia.nd, t.lir it it egrul I,,,,, is c~vnluat~cd cxuctly wit Ii regarc! 
to the frc~c~uellc’y. This is possible brc*uusc~ the modal 
futic~t ions %,, for tlic pinned-edgca plate ark sine wa.ves (SCV 
“‘1. (16)) so that I,,,,, Cain 1~ obtwiucd iti terms of the fuuctioiis 
(sonic~tinu~s c+alletl S~liwarz func*tions) 

:u](l b IILLS tltc four valurs 

b=ii+ ‘,; x 
{ 1 

A similar result could br obtained for the clamped-cdgrl 
plate by- approximating the modal functions Z, (see eq. (17)) 
by a finite sine series 

For either pinned or c+lampc~tl ctlgcs, the arguments a and b 
of the ,Schwarz fmictions ,/‘A would range from large positive 
to large ncgativc values. perticularlj- for thr liighrr modes, 
and n-oultl thus Icquirtl c~stciisivc tabulat~ion of J0 and .I,. 
‘I‘hc~ exact csprcssioii for t lit prcssurr t crm I’,, (.r) is cmplo?-cd 
in the prcsctut rctport but, lwc~al1sc the iic~c~c3sar.v tables of Jo ant1 
,I, arc not :tvail:iblr, for corivciiic~nc~c~, a uumcrical mc>tliotl of 
iittcgrntioll is usc~l to c~valuntc~ II,,(.X) and thcb aerodynamic 

illtcgr:~lS I,,,, ), r,,[,,, ant1 7;,,, of equation (23). 
The numerical mcthotl is based on the following integration 

rules for parabolic arcs: 

s 

x1’ 
y(.r)dx=$ [5?/(~,)+8y(.r,j-~?/(~,)l (25a) 

L .r1 

J’ 

.ra 

.T.J 
y(xjdr= $ [ - y(.rJS Sy(.r,) + .5y(3J] (2%) 

where s,=.r,+Ax autl s,=.r+A.r. The raug(’ of integration 
in equntioti (19), OS.rl 1, is, for couveuicncc, divided into 
an PVCU number of c~qusl scgmonts. From the stantlpoiri t 
of awutw:y tlic iiumhc~r of scpmciits riccclctl tlrpc:ritls on tlic 
ituml)or of i10tl~ in thr liighc3l motlc and 011 the value of 
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Tj for which p,&(z) is evaluated. For the numerical applications of the present report, 10 segments were found to be 
adequate, and the method of integration is illustrated for this number of segments in the equations to follow. 

The use of 10 segments would, in general, require the determination of p,(z) in equation (19) at 11 points on the plate. 
However,  the integrand of C,, at x=0 and x=1 is zero since t.he mode shapes 2, are zero at these points, and therefore 
p,(x) need be evaluated at only the 9 interior point,s (equally spaced between x=0 and x=1). The values of the terms 
P,, P,, and Ffl of equation (22) for these points may be arranged in matrix form as follows: 

- P,(.l) 
Pn(.2) 
Pn(.3) 
Pn(.4) 
Pn(.5) 
Pm(.f% 
P-(.7) 
Pnp,(.S) 

- PrL(.O) 

1 
=zi@ 

8-w) 
13L(.l) 
13L(.2) 
13L(.3) 
13L(.4) 
13L(.5) 
13L(.6) 
13L(.7) 
13L(.8) 

-L(-.l) 0 0 0 0 0 0 0- 
7L(O) -L(--.l) 0 0 0 0 0 0 

12L(.1) 7L(O) -L(-.I) 0 0 0 0 0 
12L(.2) 12L(.l) 7L(O) -L(-.l) 0 0 0 0 
12L(.3) 12L(.2) 12L(.l) 7L(O) -L(-.l) 0 0 0 
12L(.4) 12L(.3) llL(.2) 15L(.l) 4LW 0 0 0 
12L(.5) 12L(.4) llL(.3) 14L(.2) 12L(.l) 5L(O) 0 0 
12L(.6) 12L(.5) llL(.4) 14L(.3) llL(.2) 13L(.l) 5L(O) 0 
12L(.7) 12L(.6) llL(.5) 14L(.4) llL(.3) 12L(.2) 13L(.l) 5L(O)- 

?jn(.l) 
F,(.2) 
F,,(.3) 1 
P,t(.4) 

POIP 
‘?j”(.5) } =---- 
F,(.B) 

120 

%,(.I) 
%,(.2) 
2,(.3) 
%. (.4) 

1 
%,(.5) +&p 
X,(.6) 
%,(.7) 
%,(.8) 
C(.9) 

.Z,,(.l, 1 
Z,,‘(.2) 
Z”‘f.3) 
X,$‘(.4) 
%,,‘(.5) 
%,,‘(.6) 
%,,‘(.7) 
Z,‘(.S) 

. Z,‘(.9) ! 

i;(.2) z’(.3) 2(.3) z’(.5) z(X) 2(.7) 2(.8)1 ( 13%,(.1)7 
Z(.l) Z(O) i?(.l) z(.2) 7;(.3) 1(.4) z(.5) z(.S) 1;(.7) 
Z(.2) Z(.l) Z(0) z(.l) x(.2) z(.3) 2(.4) z(.5) z(.S) 
Z(.3) Z(.2) Z(.l) Z(O) Z(.l) 2(.2) 2(.3) Q.4) D.5) 
Z(.‘4) X(.3) L(.2) %I) Z(0) L(.l) 2(.2) Q.3) In.4) 
?;(.5) L(.4) tD.3) E(.2) 2(.1) Z(0) Z(.l) 2(.2) E(.3) 
z(.6) z’(.5) 2(.4) E(.3) z(2) z(.l) z(O) E(. I) Q.2) 
Q.7) L(.G) 2(.5) 2(.4) 2(.3) E(.2) L(.l) Z(0) X(.1) 
2(.8) z;(.7) z(.S) z(.5) z(.4) z(.3) 2(.2) i;(.l) z(O) 

12X,(.2) 
12ZnC.3) 
11%,,(.4) 
14%,,(.5) 
1 lZ,,,(.6) 
12%,,(.7) 
12%,(.8) 

c  13%,(.9) 

Fn(.7) I J  ~n(.,(.8) ~n(.W I- 

T,(J) 2?(.1) E3(.1) Q.1) L=,$(.l) I&(.1) Ei(.l) Q.1) L=“(J) Z&l) 
E1(.2) E?(.2) %(.2) Q.2) Z&2) Z(.Z) Z(2) G(2) Z(.2) Zd.2) 
2,(.3) X*(.3) jJa(.3) L=d(.3) Z,s(.3) E(.3) &(.3) Zd.3) Ed.3) cd.3) 
E,(.4) Z2(.4) L=a(.4) Zd(.4) L=5(.4) Z6(.4) Zd.4) Ed.4) E(.4) Zd.4) 
L1(.5) E2(.5) 23(.5) L=d(.5) L=5(.5) Q.5) Zd.5) Ed.5) Zd.5) Zd.5) 
z,(.e) z2(.6) za(.6) x4(.6) L=5(.6) ze(.6) L=1(.6) &(A-$ h-j) %.6) 
E1(.7) Z2(.7) Zz(.7) L=((.7) L=5(.7) E(.7) Ed.7) Ed.7) G.7) Zd.7) 
z,(.8) zz(.8) zz(.S) E&8) z5(.8) $(.8) %.8) k3) L=d.8) k8) 
Z,(.9) K(.g) E&.9) Z,(.9) 2,(.9) Q.9) Z,L9! Zd.9) Zd.9) %.9) 

where L(U) and E(u) are defined after equation (21) and z,(u) and sI are defined in appendix B (eqs 

(26) 

(27) 

(28) 

(B16) and (B15)). 
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The rows of the square matrix in equation (26), down to the 
row pertaining to P,(.5), were obtained by applying the 
integration rule given by equation (25a). In the remaining 
rows the contributions from the region x>O.5 were obtained 
by applying equation (25b). In equation (27) the inte- 
grating factors multiplying 2, in the column matrix were 
obtained by using equation (25a) between x=0 and x=0.5 
and equation (25b) between x=0.5 and x= 1.0. In appendix 

B the singular integral Fn(x) presented after equation (22) 

is evaluated and the form of ?, leading to equation (28) is 
derived. 

Equations (26), (27), and (28) are summed in accordance 
with equation (22) to obtain the column matrix (~~(2)). 
By use of this column matrix and the integration rules of 
equation (25), the aerodynamic term i’,, is obtained in 
the form 

Cm=& [13p,(.l)Z,(.1)+12~‘n(.2)~m(.2)+12~n(.3)~m(.3)+ 

where the integrating factors 13, 12, . . . 12, 13 were ob- 
tained in the same manner as those in equation (27). By 
means of equation (29), C,, can be evaluated for a given edge 
fixity and for particular values of M, k, and pO/p. 

SOLUTION OF FLUTTER DETERMINANT 

As previously stated, the conditions for flutter are de- 
termined from the nontrivial solutions of equation (14). 
Since equation (14) is complex, it may be solved directly for 
one complex unknown or two real unknowns. For a specific 
edge fixity the variables (see eq. (13)) in equation (14) are 
l/p (the inverse of p is preferred because p becomes infinite 
for p=O), 0, f, M, k, and pO/p. It is convenient to interpret 
the Q of equation (13) as the complex quantity (~,/w)~(l +ig) 
rather than (wJu)“, where g may be regarded as a struct.ural 
damping coefficient. (For this use of g, see, for example, 
refs. 12 and 13.) Each of the various quantities on which 
equation (14) is dependent was varied to some extent, as 
will be discussed in the next section. A particular calcula- 
tion was performed by setting values for l/p, M, k, f, and 
pO/p and solving for Q. Then, because it was one of the more 
easily varied parameters, 11~ was changed and again Q was 
solved for. This procedure was continued until curves of 
l/p and (R.P.Q)‘12 plotted against g passed through .g=O. 
The value for k was t,hen changed and the procedure re- 
peated. After sufficient variation of l/p and k, curves 
could be established of l/w against 2kl=2k(R.P.fi)1/2 for 
particular values of the other parameters M, g, f, and pa/p. 

RESULTS AND DISCUSSION 

In the preceding sections a method of flutter analysis has 
been developed for a two-dimensional flat panel or plate held 
at its leading and trailing edges. The variables in the 

analysis are the number of modes or degrees of freedom the 
panel is assumed to have, Mach number (greater than l.O), 
I//J, 2k,=2k(R.P.n)“2, g, f, p,Jp, and edge fixity. The 
analysis conveniently yields stability boundaries in terms of 
11~ and 2k,, which are used as the coordinates of most of the 
figures presented. These two parameters are given in terms 
of the properties of the panel and supersonic stream by 

(30) 

where (T is panel density, q is dynamic pressure, and K, is the 
first-mode eigenvalue given in table I for clamped and pinned 
edges. Inasmuch as the various parameters in the analysis 
contain implicitly the panel properties (E, u, V, and T/C), 
axial force F, air density, and speed of sound, the effects of 
varying these implicit properties can be obtained only by 
cross-plotting. 

Some effects of the number of modes used in the analysis 
are studied by using two and then four modes of the clamped- 
edge panel with selected values of Al, g, .f, and pO/p. In 
addition, M, g, .f, and pa/p are varied in order to study their 
effects. To a lesser extent the pinned-edge panel is invest,i- 
gated for comparison with certain clamped-edge results. 

The following table lists the conditions for which stability 
boundaries are given : 

I- 
I- 

I- 

Mach Degrees 

I I 

Density 

“UmMr, 
of Structural damping Tension pamm- ratio. 

freedom coefficient, g eter, J PJP 

Clamped edge 

I 0 0 

1,3 i---F-- 

0 
O,O.l, 0.5, 1.0 1.0 -- 

0, 0.005, 0.025, 0.03,0.05 0 0 

Ji 1 

0 0, 0.1, 0.5, 1.0 0 
~- 

0, 0.002, 0.003i5, 0.05 0 0 _.__ ----- --- 
2 0 0 0 

1.56 
4 0 0 0 

Pinned edge 

0. 0.003, 0.00475, 0.05 0 0 

The results are first grouped according to 1fach number 
and are later summarized and compared. 

RESULTS FOR MACH NUMBER OF 1.3 

Effects of two and four modes.-Figure 2 gives the results 
for the clamped-edge panel for the simple case of two degrees 
of freedom (first and second modes) with g=f=po/p=O. 
The abscissa is the stiffness parameter m,c/U=2kl and the 
ordinate is the mass ratio l/p. An ordinate of zero repre- 
sents the limiting case of p=O, or, in other words, the plate 
is vibrating in a vacuum. The two solid curves are the first- 
and second-mode stability boundaries as indicated. It was 
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.20 1 I 
C-Aluminum panels 
\ at sea level 

I 
I 
\ k = 0.425 

.I6 I I\ I I I 
I st - mode 
l.....“rl”... 

2 .08 
- 

.s 
e 

u I II I/ I I I 

Stiffness parameter, W, c/U 

FIGURE 2.-Stability boundaries from a two-mode analysis for 
clamped-edge panels. M= 1.3; s=f=F=O. 

established by application of the Nyquist criterion (see, for 
example, ref. 14) as well as by interpretation of structural- 
damping results that the region to the right of the first mode 
boundary is stable, whereas the region to the left is unstable; 
furthermore, the region within the second-mode boundary is 
doubly unstable as indicated (unstable with regard to both 
boundaries). Values of the reduced frequency k are indi- 
cated along both curves. The points at which the curves 
cross the abscissa correspond to vibration in a pure normal 
mode (flutter at t,he limiting condition of p=O). 

It can be seen from equations (30), by taking the product 
of l/p and 2kl, that a specified panel material, air density, 
and speed of sound are represented by a hyperbola such as 
the dashed curve of figure 2 with the panel thickness-chord 
ratio r/c increasing to the right. The intersection of the 
hyperbola with the stability boundary fixes the value of T/C 
for neutral stability. Thicker panels are stable and thinner 
panels are unstable. (The particular hyperbola shown is for 
aluminum panels in air with standard sea-level properties. 
For denser panels or less dense air, the hyperbola would be 
below the one shown.) 

Some effects of the number of modes in the analysis were 

studied by including the first four normal modes, and the 
results are shown as the solid curves of figure 3. The dashed 
curves are the results for two modes from figure 2. With the 
addition of the third and fourth modes, the first-mode bound- 
ary is moved very slightly to the left (except where it crosses 
the abscissa) and is still the “critical” or decisive stability 
boundary separating the stable from the unstable region. 
The second-mode bound&y is also only moderately affected. 
Within the already unstable region there now exist third- 
mode and fourth-mode boundaries which are closely anal- 
ogous in appearance and character to the first- and second- 
mode boundaries, respectively. The unstable region is 
divided by three of the boundaries, into regions of different 
degrees of instability as indicated by the numbers in paren- 
theses ranging from (1) to (4). (The points at which the 

, I 

i ‘1: 
\ I. 

_-- :-2d- mode 
boundary 

I 

\ 

\ I 

// I, (3) II 
I 

/I I I I I II 

I //I’ I (4) II II I/ I I 

i 

I I I I I 
Four modes 

- -Two modes 

-.I2 
0 .2 .4 

Stiffness paromete;T) u,c/u ” 
1.0 

FIGURE 3.-Stability boundaries from two-mode and four-mode 

analyses for clamped-edge panels. &f= 13. gc+?Lo . f P . 
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various boundaries cross the abscissa have the same signifi- 
cance as before.) These results indicate that two modes 
give a decisive stability boundary which is a close approxima- 
tion to that for a large number of modes, at least for the con- 
ditions g=f=po/p=O and M=1.3. 

Effects of structural damping coefficient g.-Figures 4 (a) 
and 4 (b) show the first-mode and second-mode boundaries 
(from a four-mode analysis) for various values of g (taken 
to be the same for all modes). Third- and fourth-mode 
boundaries are affected by g in a manner similar to that of 
the first and second modes, respectively, and are not shown. 
The second-mode boundary of figure 4 (b) vanishes com- 
pletely when g becomes slightly greater than 0.025, and for 
all positive values of g it remains in the unstable region to the 
left of the first-mode boundary. Included in figure 4 is the 
clashed hyperbola from figure 2. Since the thickness-chorcl 
ratio T/C decreases to the left in the figure, the abscissas of 
the intersections of the hyperbola with the stability bound- 
aries in figure 4 (a) show the proportional reduction in 
t.hickness required to prevent flutter as g increases. 

Effects of tension.-Tension has a marked effect on the 

\ 1 
\..Aluminum 

I I I 
panels at sea level I III i 

I I Co) i 
0 .2 .4 6 23 1.0 

Stiffness parameter, WI c/U 

(a) First-mode boundary. 
FIGVRE 4.-First-mode and second-mode stability boundaries from 

a four-mode analysis for clamped-edge panels for various values of 

structural damping coefficient ,f. iLI=1.3; j=;=o. 

stability boundaries, as shown in figures 5 (a) and 5 (b). 
Figure 5 (a) shows the pertinent segments of the first-, 
second-, third-, and fourth-mode stability boundaries for 
g=O and for the three values 0.1, 0.5, and 1.0 of the tensiou 
parameterf. As f increases, all the boundaries move to the 
left, and the thickness required to prevent flutter is de- 
creased. Furthermore, as f increases, the first-mode bound- 
ary moves to the left more rapidly than the higher mode 
boundaries so that the rightmost boundary, separating 
stable from unstable regions, is one of the higher mode 
boundaries. For example, for f=l.O in figure 5 (a), the 
third-mocle boundary is farthest to the right. This trend is 
not surprising since application of tension to t,he clamped- 
edge plate causes the largest percentage increase in the first 
natural frequency, the next largest in the second natural 
frequency, and so on. Thus, it appears that the inclusion 
of only two modes in a flutter analysis may not be sufficient 
when the plate is subjected to tension. Inasmuch as the 
stiffness parameter 2k, and the tension parameter-f arc both 

.25 

.20 

.I5 

i - 
.s 
F 
w 
5 

.I0 

-05 

0 .2 .3 .4 .5 6 .7 
Stiffness parameter, u,C/U 

(b) Second-mode boundary. 
FHXJRE 4.-Concluded. 
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Stable 1 

.025 

I I !V - First mode 
I’ ----- Second mode 

- I I ,I , ,, ,, r -- Third mode 
*III --- Fourth mode 

0 .I .2 .3 4 .5 
Stiffness porameter, wlc/U 

(a) g=O. 

(b) g=O.O05. 

6 

FIGURE 5.-Stability boundaries from a four-mode analysis for 
clamped-edge paI>els for three values of the tension parameter f. 
Al= 1.7. E=o. * > P 

basrd on the first natural frequency of the panel without 
tension, the shift of the boundaries is due sole1.v to the 
tensile force F. 

Figure 5 (b) shows segment,s of the first-, second-, third-, 
and fourth-mode boundaries with f=O.l, 0.5, and 1.0 for 
g=O.O05. By comparing figures 5 (b) and 5 (a) it can be 
seen that g has a marked effect for the smaller values off but 
its effect diminishes as .f increases. 

Effects of still air below panel.-The one remaining pa- 
rameter to be considered at M=1.3 is pa/p, the ratio of the 
density of the still air below the panel to the density of the 
supersonic stream above. In the preceding results this 
ratio was zero. The effect of increasing pa/p to 1.0 will now 
be examined. For the sake of simplicity and convenience, 
onl?: a two-mode anal.ysis is made. Effects of structural 
damping and tension are also included. 

Figure 6 (a) shows first- and second-mode boundaries for 
pa/p= 1 as solid curves and, for comparison, the dashed 
boundaries for po/p=O from figure 2. Just as with the other 
results, the points where the boundaries cross the abscissa 

correspond to pure-mode resonance in a vacuum. At these 
crossings the imaginary part of C,, passes through zero. 
This imaginary part is a measure of aerodynamic damping. 
In the previous calculations C,, consisted only of I,,,, 
whereas, for p,,/p=l.O, C,, also contains rZn-l-Tn, (see eq. 
(23)). By comparison of the solid and dashed curves on 
figure 6 (a) it can be seen that, as a consequence, the first- 
mode boundary has moved to the left by about 20 percent 
but the second-mode boundary has changed relatively little. 

Such an effect of still air might be expected since, for the 
same maximum panel amplitude, a first-mode vibration 
radiates into the still-air region a greater amount of energy 
per cycle than does a second-mode vibration. (With regard 
to the radiation of sound from a piston in a plane wall, 
specifically for the case of a piston with nonrigid face, p. 336 
of ref. 15 gives the result that, at frequencies which are 
small compared with the ratio of the speed of sound to 27r 
times the piston radius, the pressure on the piston is approxi- 
mately uniform and nearly proportional to the average 
velocity of the piston. Since the average velocity of the 
second mode and all other antisymmetric modes is zero, the 
pressure due to these modes is nearly zero and, accordingly, 
almost no work is being done on the still air.) From the 
fact that net energy can never pass from the still air into thr 
panel, it cloes not follow, however, that the still air neces- 
sarily has a stabilizing effect in all cases. Conceivably, the 
still air could act to modify the flutter mode so that more 
energy would be extracted from the supersonic stream, and 
thus contribute toward an instability. Apparently such is 
the case in figure 6 (a), where the solid second-mode curve 
is above the dashed second-mode curve. The fact that, 
dissipat.ion of energy into the still air is not, necessarily 
stabilizing should not be surprising, inasmuch as another 
means of energy dissipation, structural damping, is usuallp 
stabilizing but sometimes destabilizing. 

As can be observed in figure 6 (a), the first-mode boundary 
has moved to the left of the second-mode boundary in the 
region of small mass ratio ; in this region the seconcl-mode 
boundary becomes critical. 

Figure 6 (b) shows the effects of structural damping on the 
first-mode boundary, which for g=O is shown more com- 
pletely in figure 6 (a). Curves are included for g=O, 0.005, 
0.03, and 0.05. For values of g larger than about 0.025 the 
second-mode boundary vanishes as it clid previously with 
po/p=O in figure 4 (b), and only the first-mode boundary 
remains. The dashed hyperbola for aluminum at sea level 
is includecl in figure 6 (b), and it can be seen that a plate with 
zero structural damping would have to be about 30 percent 
thicker than one with g=O.O5 in order to prevent flutter. 

Figure 7 shows the effects of the tension parameter .f for 
pa/p=1 and g=O. Both first- and second-mode boundaries 
are shown forf=O, 0.1, 0.5, and 1.0. In this case, just as 

391986-57-3 
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FIGURE 6.-Stability boundaries from a two-mode analysis for 

clamped-edge panels for various values of g. 

and 1.0. 

M=1.3; j=o; T=o 

with p,,/p=O, tension causes a marked reduction in the thick- 
ness required to prevent flutter. Furthermore, if more than 
two mocks had been included, tension would have resulted 
in a higher mode boundary farther to the right than the 
curves shown for the higher values of .f. 

RESULTS FOR MACH NUMBER OF & 

Clamped-edge panels.-Figure 8 (a) shows the stability 
boundaries obtained from a two-mode analysis for clamped- 
edge panels at M=Jz with-f= pa/p= 0 for various values of g. 
Included in the figure is the dashed hyperbola appropriate 
to this Mach number for aluminum panels in sea-level air. 
From a comparison of figure 2 and the curves of figure 8 (a) 

%08 
.o 
‘;r L 

g .06 
P 

0 .I .2 .3 .4 5 6 .7 
Stiffness parameter, w,c/U 

FIGURE 7.-Stability boundaries from a two-mode analysis for 

clamped-edge panels for various values off. M= 1.3. c=O. @= 1.0. ,.L2 ‘P 

for g=O, the first-mode boundary of figure 2 appears to have 
moved into the positive mass-ratio region and the sccond- 
mode boundary appears to be moving toward the negative 
mass-ratio region. Such is the cast, but, inasmuch as the 
flutter frequencies on the upper bounclary of figure 8 (a) are 
about midway between the first and second natural fre- 
quencies, this boundary can now be referred to only loosel- 
as a “first-mode” boundary. The lower boundary is still 
readily identified as a second-mode boundary and the inter- 
section wit.11 the abscissa corresponds to vibration in a purr 
second mode. 

In contrast to the situation at M=1.3, the second-mode 
boundary for g=O is now decisive for panels represented by 
the dashed hyperbola. Values of thickness to the right of the 
second-mocle boundary arc stable and, in addition, a small 
range of thickness values is stable between the upper and 
second-mode boundaries. 

The curves in figure 8 (a) for positive values of g show that 
the region of instability within the second-mode boundary 
is reduced for small values of g (as for M= 1.3) and vanishes 
when g is slightly greater than 0.00375, but that small values 
of g increase the region of instability associated with the 
upper boundary. This effect of g on the upper boundar>- is 
in marked contrast to its effect on the first-mode bounclary 
at M=1.3. (See fig. 4 (a).) The differing effects of struc- 
tural damping at M= 1.3, M=,‘z, and M= 1.56 are con- 
sidered further in the section on “Variations With Mach 
Number.” 

Pinned-edge panels.-In order to indicate effects of edge 
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flxity, boundaries are shown in figure 8 (b) for conditions 
identical to those of figure 8 (a) except that the edges are 
pinned rather than clamped. The boundaries for g=O, 
which are given incompletely in reference 5 and thereby lead 
to the conclusion t.hat only a small range of panel thickness 
is stable at M=&i, have been extended to higher frequencies 
with the result that sufficiently thick panels are also found 
to be stable. The effect of structural damping on both 
boundaries in figure 8 (b) is very similar to that in figure 8 (a). 
The dashed hyperbola appropriate to pinned-edge aluminum 
panels in sea-level air is included in the figure. The hyper- 
bolas of figures 8 (a) and 8 (b) are located differently because 
of the different values for the fist-mode eigenvalue K1 of 
equation (30) for pinned and clamped edges. (See table I.) 
From the intersection of the dashed hyperbolas with the 
stability boundaries in the two figures, it can be determined 
that a pinned-edge panel must be somewhat thicker than a 
clamped-edge panel in order to be flutter free but not nearly 
as thick as might be expected from a simple comparison of 
the first natural frequencies. Values of the reduced fre- 
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FIGURE S.-Stability boundaries from a two-mode analysis for 
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P 

quency k are indicated along each of the boundaries of 
figure 8. 

Based on what occurred at M= 1.3 (see fig. 3)) there is the 
possibility that for g=O the fourth-mode boundary from a 
four-mode analysis would alter the stability picture in both 
figures 8 (a) and 8 (b) in the relatively unimportant narrow 
range of stability between the boundaries shown for g=O. 
This minor effect of the fourth-mode boundary is expected 
to disappear for values of g greater than about 0.005 and, 
therefore, a four-mode analysis was not made for this Mach 
number. 

RESULTS FOR MACH NUMBER OF 1.56 

Effects of two and four modes.-As in the case of M=1.3, 
stability boundaries were obtained first for two and then for 
four degrees of freedom with g=f=po/p=O. These bound- 
aries appear in figure 9 as dashed curves for two modes and 
solid curves for four modes. Values of the reduced frequency 
k are indicated along the boundaries. The stable region is 
again to the right, and on the left the degree of instability 
is indicated in parentheses for the four-mode analysis. 

The two-mode results in figure 9 continue the trend noted 
in the preceding section from comparison of the curves of 
figure 2 and those of figure 8 (a) for g=O. ‘I’hc second-mode 

Stiffness parometer, u,C/U 

FIGURE 9.-Stability boundaries from two-mode and four-mode 

analyses for clamped-edge panels. M= 156. g=f=@=o . , P . 
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boundary has moved entirely into the negative mass-ratio 
region. The upper boundary has moved higher in the posi- 
tive mass-ratio region, and the flutter frequencies along it, 
which in figure 8 (a) were midway between the first and 
second natural frequencies, are now closer to the second. 
For this reason the upper boundary, which was loosely identi- 
fied as a “first-mode” boundary in the discussion of figure 
8 (a), will now be referred to as a “second-mode” boundary. 

A further point of difference between the results at M- 1.3 
and M=1.56 is that the addition of the third and fourth 
modes at M= 1.56 shifts the decisive stability boundary to 
the left by about 10 percent, whereas at M=1.3 the shift is 
insignificant. (C om p are figs. 3 and 9.) Although this shift 
indicates that. the two-mode result is not well converged, the 
two-mode boundary is conservative; that is, it requires a 
greater thickness to prevent flutter. (As with two modes, 
when four modes are used, half of the stability boundaries fall 
in the negative mass-ratio region.) 

Effects of structural damping coefficient g.--INo curves are 
shown to indicate effects of structural damping at a Mach 
number of 1.56, the reason being that, for moderate values 
of the coefficient g, ranging at least up to 0.05, the stability 
boundaries fall virtually on top of those for g=O. The major 
effect of structural damping is a moderate change in flutter 
frequency. 

Effects of tension and of still air below panel.-Effects of 
tension have not been determined, but tension is expected 
to have essentially the same favorable stiffening effect at all 
Mach numbers as at M= 1.3. The effect of still air behind 
the panel has also not been determined, but this effect is 
expected to be less than at M= 1.3 for two reasons: First, the 
air beneath the panel acts primari1.v as an energy absorber 
and one means of energy absorption, structural damping, 
has been found ineffective in shifting the stability boundaries. 
Second, on the decisive boundary the flutter mode appears to 
be predominantly the second natural panel mode, and it was 
found that at M= 1.3 the second-mode boundary is changed 
only- slightl!- by increasing pa/p from 0 to 1. 

VARIATIONS WITH MACH NUMBER 

The foregoing results have been presented for particular 
J/lath numbers. In an effort to clarify- some of the anom- 
alies that have been noted in these results, figures 10 to 12 
arc presented. Figure 10 shows the panel thickness-chord 
ratio required to prevent flutter as a function of M for 
clamped-eclge panels with g=f= pa/p= 0. The curves appl- 
to aluminum panels in standard sea-level air. The values 
at M=1.3 , >‘?, and 1.56 were obtained from figures 2 and 
8 (a) ancl the two-mode results of figure 9. The shape of the 
curves between these known points is estimated. The 
stable region is above or to the right of the shaded boundaries. 

The boundary which is labeled “first-mode” on one end 
and “second-mode” on the other has flutter frequencies 
which progress from slightly above the first natural frequency 
to somewhat below the second natural frequency as the 
h&ch number is increased. (See previous discussions con- 
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Unstable 

(I) 
.- 

.002 

Ol.2 1.3 1.4 1.5 If? 
Mach number, M  

FIG~RP lO.-Minimum panel thickness ratio 7/c required t,o prevent 
flutter as a function of Mach number for clamped-edge aluminum 

panels in sea-level air. ~=,f=c=O. 
P 

cerning figs. 2,s (a), and 9.) The boundary labeled “second- 
mode” has flutter frequencies slightly below the seconcl 
natural frequeiic\- throughout. 

Figure 10 shows the second-mode stability- boundary to 
be decisive in the L’lach number range from slightly above 
1.30 to slightly above 4. As the structural damping g 
is increased from zero, the second-mode boundary shrinks 
to the left leaving the ‘(first-mode”-“second-mode” bouncl- 
a,r>- decisive throughout the range of Mshown. For example, 
for a value of g slightly greater than 0.0038 the second-mocle 
boundary does not exist at M= ~‘2 (see fig. 8 (a)), and for 
a value of g slightly greater than 0.025 it does not exist, at 
M= 1.3 (see fig. 4 (b)). 

These effects of g on the second-mode boundary arc 
illustrated in figure 11, which contains cross plots of g 
against r/c obtained from the intersections of the dashed 
hyperbolas (for aluminum panels in sea-level air) with the 
boundaries for constant g such as shown in figures 4, 8 (a), 
and 9. Figure 11 also shows that an increase in g from 
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level air. 

zero would cause the “first-mode”-“second-mode” bound- 
ary of figure 10 to drop markedly at M=1.3, rise slightly 
at M=& and remain essentially unchanged at M=1.56. 
The ratios of flutter frequency to the first natural frequency 
w/w1 are indicated for each of the crossings and tend to 
show more clearly the connection between figures 10 and 11. 
(Values of w/w1 near WZ/W~, which is approximately 2.76, are 
associated witch the second-mode boundary and values 
between 1.0 and 2.05 are associated with the “first-mode”- 
“second-mode” boundary.) A complete understanding of 
the manner in which the curves change character and position 
with Mach number, particularly between M= 1.3 and 
M=,h, requires more calculation than presented herein. 

Figure 12, which has the same ordinates as figure 10, is 
presented for the purpose of summarizing some effects of 
all the parameters investigated. The results shown are 
based on two modes, except in the case of tension where only 
four-mode results are known. The results again apply to 
aluminum pan& in sea-level air. The figure shows as a 
solid curve the shaded boundary from figure 10 for clamped- 
edge panels ancl as a short-dash curve the effect on this 
boundary of increasing g from 0 to 0.05. The third (long- 
dash) curve is for pinned-edge panels with g=O, the value 
at Ad=2 having been obtained from reference 2. The points 
at Al=,‘2 were obtained from figure 8 (b) and thr upper 
(second-mode) curve was pattcrnrd after that for clamped- 
edge panels. As a matter of interest, points are included 
in figure 12 at M= 1.3 for clamped-edge panels and indicate 
the effects of tension (f=0.5) ancl of still air below the panel 
(pa/p= 1.0) for g=O and g=O.O5. 

Some effects of the various parameters can be assessed 
from figure 12. The overall result is that r/c is highest in 
the low supersonic Mach number range and suggests that 
this range is the m.ore critical from a design standpoint. 
Struct.ural damping is seen to have a large favorable effect 
near and below Al=@. Although ra thrr influential at 
J4= 1.3, the still air below the panel is expected to have less 
cfl’cct at M=$ and 1.56. Tensiou, which is seen to have a 
large favorable effect at 114=1.3, is expected to be similarly 
effective for all Mach numbers. In this connection, it might 
bc mentioned that one means of producing tension is by a 
static-pressure difference between the upper and lower panel 
surfaces, particularly for the case where the panel leading 
and trailing edges arc prevented from moving toward each 
other. A comparison of the results for the edge fixities, 
pinned and clamped, is of interest because the edge fixity of 
actual panels falls somewhere between. 

COMPARISON WITH OTHER THEORETICAL WORK 

In reference 2 the conclusion is reachecl that all panels, 
regardless of thickness, are unstable for supersonic Mach 
numbers less than 8. This result and the more plausible 
results of reference 2 for M>@ are baked on air forces 
e+xpandecl to the first power of the frequency of oscillation. 
In reference 5 the necessity of including higher order fre- 
quency terms for Mach numbers near 4% is pointed out, and 

I -_ . .._. I..-. _- 
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stability boundaries, based on exact linearized unsteady air 
forces, a.re presented for M=,l?i and M=2. One bound- 
ary is obtained at M=2 which a.grees well with the com- 
parable result from reference 2, whereas two boundaries are 
obtained at M=&. The bounda.ries at M=-JSi, because 
they are not carried high enough in frequency, are interpreted 
in reference 5 as showing that stability is possible only for a 
small range of panel thickness at this Mach number. The 
results of reference 2 for M<$ are not questioned in 
reference 5. 

In the present report, stability boundaries are com.put,ed 
for M=,fi and for Mach numbers above and below this 
value (namely, M= 1.3 and M- 1.56). In view of the find- 
ings of references 2 and 5, perhaps the most noteworthy 
result of the present investigation is that, for the Mach 
numbers t,reated and probably throughout the supersonic 
range, suficiently thick panels are stable. 

In references 2 and 5 and the present report, M=@ 
appears as a transitional value. The transition is evidenced 
herein by the contrasting behavior of the stability boundaries 
at M= 1.3 and M= 1.56. Some understanding of why a 
Mach number of ?i2 is transitiona. can be had by examining 

matrix equation (26). The term ‘(yLF2) {&} of equation 

(26), being the entire first-order frequency contribution to 
the damping, is dominant at low frequencies. This term 
appears to control the slope, at low frequencies, of t,he 
eventually decisive stability boundary and changes sign as M 
passes through 4. When M<fi, the slope is negative for 
low frequencies, but as the frequency increases the slope 
eventually becomes positive because of the higher order 
frequency effects (for example, in fig. 2). Because only 
first-order frequency effects are included, in essence only the 
beginning portions of the stability boundaries for M<,fi are 
obtained in reference 2, and, as a consequence, the conclusion 
is reached that all panels are unstable below this Mach 
number. For Al>,/“% the slope of the decisive stabilit.y 
boundary starts out positive and becomes more so as the 
frequency increases. (See fig. 9.) If aspect ratio were 
included in the present treatm.ent (by considering three- 
dimensional rather than two-dimensional pa.nels), a reduction 
in aspect ratio would probably tend to eliminate the initial 
negative slope of the eventually decisive stability boundary 
for M<@and increase the initia.1 positive slope for M>$. 
This effect of aspect ratio is expected because, in general, a 
reduction in aspect ratio results in an iucrease in aerodynamic 
damping with a consequent enlargement of regions of 
stability. 

In reference 7, which treats a different problem (nam.ely, an 
infinite two-dimensional pa,nel on equally spaced supports), 
the result was also obtained tha.t somewhere in the supersonic 
Mach number range a panel will flutter regardless of its 
thickness. The conclusion was reached that stability is not 
possible at supersonic Mach numbers less than about 1.25 
and that at higher Mach numbers a sufficient increase in 
thickness will always render a stable panel unstable. How- 
ever, it was observed that over a large portion of the pre- 
dicted region of instability the flutter was of an extremely 

mild character, since a large number of oscillations were 
required to double the amplitude. With the hope of elimi- 
nating the large region of mild instability, small amounts of 
viscous damping were included. Contrary to expectations, 
thick panels remained unstable for the example given at 
M=l.S. 

As part of the viscous-damping investigation, the results 
were interpreted so as to determine regions of stability and 
instability. As shown in figure 10 of reference 7, an apparent 
conflict with the results of Nyquist diagrams was found. 
(The Nyquist diagram concept is used in general in reference 
7 for determining stability.) This conflict is based on the 
assumption that most investiga,tors interpret structural- 
damping results according to the concept t.hat removal of 
damping tends to destabilize. This assumption is incorrect!, 
however, and no such simple criterion holds true for inter- 
preting structural-damping results. A feature to be noted 
in the example chosen in reference 7 to illustrate the apparent 
conflict is the existence of infinite singularities in the air forces 
at the end points of the boundaries (g=O, 0.01, and 0.03) on 
the right in figure 9 of the reference (designated type B loci 
therein). By way of explanation, such singularities occur in 
the linearized-flow t,rcatment because a traveling wave of 
panel deflection is moving at a speed corresponding to M= 1 
relative to the air above or below the panel. 

In this analysis the question of stability was investigated 
by means of both the structural-damping concept and the 
Nyquist diagram concept. The structural-damping results 
in every case agreed with the Nyquist diagram results. 
Incidentally, in using the Nyquist concept, knowledge of the 
aerodynamic forces for all frequencies from minus infinity 
to plus infinity is required. Thus, the concept is not appli- 
cable, in general, when the a.ir forces are approximated by a 
few terms of a power-series expansion in the frequency of 
oscillation. 

COMPARISON WITH EXPERIMENT 

A few experimental results on the flutter of flat and buckled 
panels are available for comparison with the theory of the 
present report for flat panels ancl that of reference 3 for 
buckled panels. Reference 16 gives experimental result,s 
at M= 1.3 for panels 11.62 inches long iti the st,ream direct.ion 
and 8 inches wide that were held by clamping the leading and 
trailing edges. In figure 13, the results of reference 16 at. 
M=1.3, together with data more recently obtained in the 
Langley supersonic flutter apparatus on both flat ancl 
buckled panels at other Mach numbers, are compared with 
t,heory. The results arc prcsentecl in terms of tbc thickness- 
chord ratio r/c needed to prevent flutter of aluminum-alloy 
panels at an altitude of 25,000 feet as a function of Mach 
number. These points were obtained from tests of panels 
of different thicknesses (see, for example, ref. 16) and repre- 
sent the thinnest panels which did not flutter. (Where 
necessary, experimental data were adjusted to a pressure al- 
titude of 25,000 feet with the relation r/c= (T/C) r(p/p1)1’3. 
The subscript r refers to the ex-perimental conditions.) 

In figure 13, the solid curve is the flutter boundary for 
flat panels obtained from the present theory and the square 
symbols are the corresponding experimental results. The 
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0 1  
1 .0  

I 
1 .5  

o  Buck led  p a n e l s  

0  Flat  p a n e l s  I 
Expe r imen t  
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M a c h  n u m b e r ,  A 9  
F I G U R E  13 . -M in imum pane l  th ickness rat io T/C requ i red  to p revent  

flutter of a luminum-a l l oy  pane ls  at 25,000-f t  al t i tude. 

d a s h e d  cu r ve  is t he  stat ic-stabil i ty b o u n d a r y  for  buck l ed  
pane ls ,  p r o p o s e d  as  a  f lutter b o u n d a r y  in  r e fe rence  3,  a n d  the  
c i rc les a r e  the  assoc ia tec l  exper imen t ,a l  resul ts.  T h e  thco-  
ret ical  cu rves  a rc  s e e n  to i nc rease  ra the r  sha rp l y  n e a r  Lfacl i  
n u m b e r  1.0.  Fo r  buck l ed  p a n e l s  the  i nc rease  is d u e  to t .he 
u s e  of  s teady-s ta te  l i nea r i zed  a i r  fo rces  wh i ch  b e c o m e  inf ini te 
at  M=l .  For  flat p a n e l s  the  i nc rease  is t hough t  to  b e  
assoc ia ted  wi th  a  c h a n g e  in  f lutter m o d e  a n d  d e c r e a s e d  a e r o -  
dynam ic  d a m p i n g .  T h e  cu r ve  for  flat p a n e l s  w o u l d  h a v e  
a  f ini te o rd ina te  at  M=l .O.  

A s  c a n  b e  s e e n  f rom f igu re  13 ,  buck le t1  p a n e l s  h a v e  b e e n  
f lu t tered u p  to a  S l a c h  n u m b e r  of  3.  Flat  p a n e l s  wcr r  no t  
f lu t tered o v e r  the  s a m e  r a n g e  b e c a u s e  buck l ed  p a n e l s  a p -  
p e a r e d  to b e  m o r e  suscept ib le  to f lutter, in  gene ra l ,  a n d  c lur -  
i ng  a  test it w a s  diff icult t,o p reven t  the  thin,  flat p a n e l s  
f rom buck l i ng  d u e  to hea t ing .  ( A  t cmpera tu rc  r ise  of  5 ’ 
to 1 0 ’ F w a s  suff ic ient to  i n d u c e  buck l i ng  in  m a n y  pane ls . )  

T h e  a g r e e m e n t  b e t w e e n  theo ry  a n d  expe r imen t  for  b o t h  
flat a n d  buck l ed  p a n e l s  is surpr is ing ly  g o o d ,  i n a s m u c h  as  the  
expe r imen ts  w e r e  m a d e  o n  p a n e l s  wi th  a  w id th - leng th  ra t io  
of  0 .69 ,  w h e r e a s  the  theo r ies  a r e  for  two -d imens iona l  pane ls .  

C O N C L U D I N G  R E M A R K S  

A  Ray le i gh  t ype  ana lys is  invo lv ing  c h o s e n  m o d e s  of  t he  
p a n e l  a s  c l eg rees  of  f r e e d o m  h a s  b e e n  u s e d  to t reat  t he  f lutter 
of  a  two -d imens iona l  flat p a n e l  s u p p o r t e d  at  its l e a d i n g  a n d  
t ra i l ing e d g e s  a n d  sub jec ted  to a  m i d d l e - p l a n e  tens i le  force.  
T h e  p a n e l  h a d  a  supe rson i c  s t ream pass ing  o v e r  its u p p e r  
su r face  a n d  still a i r  be low .  T h e  a e r o d y n a m i c  fo rces  d u e  to 
the  supe rson i c  s t ream w e r e  o b t a i n e d  f rom the  theo ry  for  
l i nea r i zed  two -d imens iona l  u n s t e a d y  f low a n d  the  fo rces  d u e  
to the  still a i r  w e r e  o b t a i n e d  f rom acoust ica l  theory .  T h e  
still a i r  b e n e a t h  the  p a n e l  w a s  t rea ted  o n  the  assump t i on  
that  t he  sti l l -air rese rvo i r  e x t e n d e d  to infinity. Accord ing ly ,  
o n c e  acoust ic  e n e r g y  w a s  rad ia ted  in to  this reg ion ,  n o n e  of  
it w a s  e v e r  re f lected.  S u c h  a  s i tuat ion is, o f  cou rse ,  no t  t he  
s a m e  as  for  a  p a n e l  o n  a  c losed  b o d y  bu t  r ep resen t s  a  first 

app rox ima t i on  for  m a n y  pract ica l  cases.  
In  o r d e r  to  s tudy  the  effect of  i nc reas ing  the  n u m b e r  of  

m o d e s  in  the  analys is ,  two  a n d  t h e n  fou r  m o d e s  w e r e  e m -  
p loyed .  T h e  m o d e s  u s e d  w e r e  the  first fou r  na tu ra l  m o d e s  
of  t he  p a n e l  in  a  v a c u u m  wi th  n o  tens i le  fo rce  act ing.  T h e  
ana lys is  i n c l uded  the  var ia l j les  :. M a c h  n u m b e r  M , st ructura l  
d a m p i n g ,  tens i le  force,  dens i ty  of  t he  still ai r ,  a n d  e d g e  
flxity ( c l a m p e d  a n d  p inned ) .  Fo r  cer ta in  comb ina t i ons  of  
t hese  var iab les ,  stabi l i ty b o u n d a r i e s  w e r e  o b t a i n e d  wh i ch  
c a n  b e  u s e d  to d e t e r m i n e  the  p a n e l  th ickness r e q u i r e d  to 
p reven t  f lutter for  a n y  p a n e l  mate r ia l  a n d  al t i tude.  

In  cont ras t  to  s o m e  p rev ious  p a n e l  f lutter invest igat ions,  
t he  p resen t  resul ts  s h o w  that  suff ic ient ly thick p a n e l s  a r e  
f lutter f ree  for  t he  M a c h  n u m b e r s  t rea ted  a n d  sugges t  that  
this is t rue  t h r o u g h o u t  the  supe rson i c  s p e e d  r a n g e .  T h e  
l ow  supe rson i c  M a c h  n u m b e r s  w e r e  f o u n d  to b e  mos t  cri t ical 
f rom a  d e s i g n  s tandpo in t  in  the  r a n g e  e x a m i n e d  ( f rom 
M = 1 .3 to  M = Z .O) .  T e n s i o n  w a s  s h o w n  at  M = 1 .3 to  h a v e  
a  m a r k e d  favo rab le  effect (a l so  e x p e c t e d  at  al l  M a c h  n u m -  
be r s )  in  rec luc ing  the  th ickness r e q u i r e d  to p reven t  f lutter, 
a n d  it w a s  p o i n t e d  ou t  that  o n e  m e a n s  of  p r o d u c i n g  tens ion  
is by  a  static p r e s s u r e  d i f fe rence  b e t w e e n  the  u p p e r  a n d  
l owe r  su r faces  of  t he  pane l .  Sma l l  a m o u n t s  of  s t ructura l  
d a m p i n g  w e r e  f o u n d  to h a v e  a  p r o n o u n c e d  benef i c ia l  effect 
n e a r  a n d  b e l o w  iW=f i  a n d  essent ia l ly  n o  effect at  M=l .56.  
In  the  n e i g h b o r h o o d  of  M =  JZ a  smal l  c h a n g e  in  e i the r  
Jlacl l  n u m b e r  o r  s t ructura l  c l amp ing  w a s  f o u n d  to c a u s e  a n  
a b r u p t  c h a n g e  in  the  th ickness requ i rec l  to  p reven t  f lutter. 
A t fif=  JZ a  p i n n e d - e d g e  p a n e l  mus t  b e  somewha t .  th icker  
t h a n  a  c l a m p e d - e d g e  p a n e l  in  o r d e r  to  b e  f lutter f ree:  S till 
a i r  b e l o w  tllc p a n e l  w a s  taken  in to  accoun t  on l y  at  2 M = 1 .3 
aw l  w a s  s h o w n  to h a v e  a  m o d e r a t e  benef i c ia l  effect.. Fo r  
ilf>  JZ t .he still a i r  is e x p e c t e d  to h a v e  little effect b e c a u s e  
for  this M a c h  n u m b e r  r a n g e  the  f lutter m o d e  is p r cdomi -  
nan t l y  the  s e c o n d  na tu ra l  m o d e ,  wh i ch  rad ia tes  ve ry  little 
e n e r g y  in to  the  still ai r .  

T h e  theor ies  of  t he  p resen t  repo r t  for  flat p a n e l s  a n d  of  
Isaacs  for  buck l ed  p a n e l s  w e r e  c o m p a r e d  wi th  a  few cxper i -  
men ta l  resul ts  o n  p a n e l s  c l a m p e d  at  l e a d i n g  a n d  t ra i l ing 
ec lgcs  o v e r  the  M a c h  n u m b e r  r a n g e  1 .2  to 3.0.  T h e  a g r e e -  
m e n t  w a s  surpr is ing ly  g o o d  i n a s m u c h  as  the  expe r imen ts  
w e r e  m a d e  o n  p a n e l s  wi th  a  w id th - leng th  ra t io  of  0 .69 ,  
wh i le  the  theo r ies  a r e  for  two -d imens iona l  pane ls .  O v e r  
the  M a c h  n u m b e r  r a n g e  of  t he  expe r imen ts  it w a s  f o u n d  
that  buck l ed  p a n e l s  b a d  to b e  th icker  t h a n  flat p a n e l s  in  
o r d e r  no t  to  f lutter. T h e  effect of  res t ra in ing  flat o r  buck l ed  
p a n e l s  o n  al l  fou r  e d g e s  h a s  no t  b e e n  invest igated.  S u c h  
rest ra in t  t oge the r  wi th  var ia t ion  of  w id th - leng th  ra t io  wil l  
p r o b a b l y  h a v e  a  s igni f icant  effect o n  the  th ickness r e q u i r e d  
to p reven t  f lutter. A n o t h e r  factor  wh i ch  requ i res  invest i -  
ga t i on  is bui l t - in  cu rva tu re  of  t he  p a n e l  in  the  s t reamwise  
o r  c ross -s t ream di rec t ion.  

L A N G L E Y  A E R O N A U T I C A L  L A B O R A T O R Y ,  
N A T I O N A L  A D V I S O R Y  C O M M ITTEE F O R  A E R O N A U T I C S ,  

L A N G L E Y  FIELD,  V A ., Apr i l  20,  1955 .  
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APPENDIX A 
SOLUTION BY MEANS OF LAPLACE TRANSFORMS 

In a recent paper (ref. B), a procedure is outlined for obtaining by means of Laplace transforms the exact solution 
for the flutter of a two-dimensional membrane which is subjected to a supersonic stream on one side and stagnant 
air on the other. This solution is called exact, inasmuch as the equation of motion for the system is solved directly 
without any limitation being imposed on the mode shape or frequency of flutter. Reference 6 also mentions that pure 
bending of a plate and the more general case in which plate bending and membrane stretching are combined could be treated 
in the same manner. The present report treats the latter case; namely, the flutter of a panel (plate) acted on by a middle- 
plane or axial force, such as tension, or compression less than the buckling load. In the body of the report this problem is 
solved by the generalized-coordinate approach, and the coordinates used are the normal modes of the panel with no axial force 
acting. In this appendix, for the sake of completeness, the solution to the same problem is derived by means of Laplace 
transforms to the point where numerical calculations can be made. The feasibility of applying the Laplace transform solution 
is examined, but no numerical results are obtained. 

The intergrodifferential equation to be solved is given by equation (2) which, upon substitution of the expression for 
II obtained from equations (5) to (9), may be written as 

or alternatively as 

{ $ [w,(o)~,(s)+~l,(r-0 ($+i2k) w,,(+; ~[i2k16’w,(~)I(.r-4} =O (A2) 

Dividing equation (A2) by mu2 yields 

w,(o)l,(x)+ l Iu(s--E) ($+7%) w,(t)dt]+; ;[i2kJ; wi(~)l,(r~)d~]} =0 (A:<) 

where 
I WI 

(--I 
2 

lX= K,” w 2 K14 12 

F 6=- 
mAc2w12 

0 - 4 2=.f Q 
w 

The quantity w1 in the formulas for CY and 6 is t.he first natural frequency of 1 :hc plate vibra ,ting in a vacuum with no axial force 
P’ acting and Kl is the associated eigenvalue. (See table I.) In the case of the membrane, w1 would be the first natural frc- 

quency of the membrane, a! would be zero (D is negligible for the membrane), andf would be 
0 

! 
2 
. 

a 

Applying the Laplace transform 
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to equation (AS) (using in the process pairs 4 and 7, p. 294, ref. 17) yields the transformed problem in the form 

- - 
~(s4z-s320-s*~1-s2*-23)-8(.52z-,s:20-zI)-z+ 

1 
m $ [(~~+i4h--4k2).%(s+i2k)z~] ?.(s)+; $ 4k2L {so’ Z(~)I,(z-&it})=0 

644) 

where-,zo=.Z(0), zl=Z’(0), z2=Z”(0) , z3=Z”‘(0), and T,(8) is the Laplace transform of I,‘(z). The Laplacc transform in 
equation (A4) involving p,Jp as a mult,iplier is the contribution of the perturbation pressure on the lower surface of the panel., 
Unfortunately, this transform does not appear to be obtainable here where the deflection % is unknown. In t’hc body of the 
report tShc effect of including the air below the panel is found to be moderate at a Mach number of 1.3 and reasons are given 
why this effect is expected to bc even smaller at the higher Mach numbers invc>stigated. In view of these facts and in view of 
the difficulty of liaridling the lower-surfact term in equation (A4), this term will be omitted in the rest of this appendix-that 
is, (~rratcd as il’ pu wcrc zero. 

‘Plicrcforc~, from equation (AS), after some algebraic manipulatio1i 

where 

(&s)=(as~-&s’)-l)* (s+iw)‘+ .w [ (i;-y]-iA(s+i2k)4 

In polynomial form the quantities (3, Jd, and N are 

M(s)== zlg m,Ws8-r+ & m,(2)si-r+ z3&,m,C31&7 
r=0 r=0 r=o 

CA7j 

648) 

W) 

(Alo> 
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The coefficients of the various series are given in the following table: 

n.,(l) I nr(*) I n T (3) 

The exact inverse transform of equation (A7) requires the determination of the roots of Q(s) (eq. (A8)). Since Q(s) is a 
tenth-order polynomial, its roots can be solved only approximately for specific values of the coefficients qr. An alternative 
procedure is to expand the quantity [Q(s)]- 1 in a Maclaurin’s series (a procedure used in ref. 18), with t,he result that it may 
be expressed in the form 

where 
qoTo= 1 

and T with a negative subscript is to be interpreted as zero. 
When the series expansion for [Q(a)]-’ (eq. (Al I)) is substituted into equation (A7), the transform z(s) becomes the sum 

of infinite series with terms of t,he two distinct types 
il 
z 

and 

wherr m. is a positive intrgcr. ‘J’]I(> illvc~rsc T,apIacc~ transform of the first. 1ypc of term is (see pair 3, p. 295 of ref. 17) 

I,-’ ;;, 
0 

‘,I ,y,, - I 
=(nl--I)! 

ant1 of thr second is (see pair 7, p. 2!)4 of ref. 17) 

(AM 

W3> 
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Upon substituting equations (A!?), (AlO), and (All) into equation (A7) and using equations (A12) and (Al3) to obtain 
the inverse transform of the resultant expression, Z(z) is given by 

In deriving equation (Al4) only one boundary condit,ion-namely, .z,,=:Z(O)=O--has been used thus far. In order to 
obtain the solution for a plate restrained in a particular manner, it is necessary to impost three additional boundary conditions. 
These additional conditions for the plate with pinned and clamped edges are given in equations (3) and (4), respectively. 
By their use, one of the terms of equation (Al4) is eliminated and two homogeneous equations in the two remaining unknown 
Et’s are obtained. The borderline condition of harmonic oscillation, or the point at which flutter occurs, is obtained by setting 
the determinant of the cocffici~nts of thrso eqliations equal to zero. Thus, the fiutt,er dctcrminant for the pinned-cdgr plate is 

and for the clamped-edge plate is 

h (1) l&3(1) 
=O 

h,“(l) ha”(l) 
(A151 

Ml) 1&3(l) 
=o 

b’(l) h3’(1) 
(AlO) 

where the determinant elements arc given by 

lCa~:ll of t,hc prcccdilig clcmc~nts contains integrals of I,l~r form 

which can bc written it1 terms of t.hc schwarz fullc.tiolls.fh(A~,z;) (WC ref. 9 or cq. (24)) as 

(AW 
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where 

Esami11ation of tl1e series in tl1c elements of equat,ions (A15) aud (A~G) reveals that X of equation (A18) ranges at least 
between 0 and n+7 arid at most between 0 and n+9. In order to obtaili accuracy to four significant figures, at least the 
lirsL cigl1t krms of caol1 series and the consequc~i 1 ranging of X betwee 0 nrid 10 2kre probubly rqi~ir*cd. Inasrnric~l1 as t,lic 
Srhwurx fr2r1ctions.fh 11avo been t2~bultLted for only the first few vducs of X, tlrc use of qu~~tio~~ (A18) wor~lct require the dctcr- 
niinatiot2 ol’ 2% rallier rst~ciisivc series of jh’s. Ari alternat,ive 21~11cl perhaps more cflic*ir11t pro~edurc would be to c~v21.lu2~tr 
directly the iukgrals I,,L ns give11 in equation (Ali) rather tl12m to resort to tl1e esp2mtlcd form in cqu2Ltio11 (Al 8). 

Attention will now lx give11 to tl~c solutiolr of tl1c detcrminant21l equtr.tions (AIS) ILIICI (Alci). A mrll~otl of soliitioli f01 
p2m112~~t~~s tli22.t \ww sought ii2 t tic g~~2ic~~mlixt~tt-~oo~~li212~t (1 apptwi~~li of tlir t)otty of ttic r(~pot.1 (t1122.t is, 1 /II :1.11(1 
2k,=2X: (/~./‘.12)“‘) will tw outlilirtl II~v. 

‘I’ltc c~lcmc~~~ts ol’ oquatiotls (AIS) 2~11~1 (AIt;) arc complies l’ullctiotls ol’ t11c five ~uL’~LI~~~~cI*s A/, k, 12 (wit11 g=(J),./, :I.IICI I/P. 

‘I’hr n1ost difficult p2wts of tl1~c elemr11ts to ev21lu2~te 211~ t.l~c il1kgrnls gellcric*dly rcpt*es~~~~t~~~l I)>- I,,, iI1 equ22,tio21 (Al i), whic*l2 
arc functions of tl1c p2~1~2~111ct~rs M and k. ‘~tie1*efoi~e, 2L convcnir221 mctliott of solutiol1 wouttt be to fix 111~ p2~1*2~111(~ters .\I 
and k aud preferably j aud vary the rcmainillg parameters 12 and l/~ it1 tl1c left-hand side (I1errinaftcr refcrretl to as A) of’ 
equation (Al5) or of equation (Al 6). By vary-ing Q and l/p over sufficiently broad ra11ges, a11 indefinitely large t1umbcr of 
combinations of & and l/p which cause A to vanish could lx found. Each combination woultt define a poi11t 011 separate sta- 
bility bou11daries, sucl1 as those show11 iii figure 3. Eacl1 boundary could tl1en be tlctcrmincd as completely as ttcsircd l,~ 
varying k over a sufficient range a11d repeating for cacl1 chosen value of k the process of finding combinations of Q ant1 I/P 
which cause A to vanish. 

As can be surmised, tl1e numerical calculations would be extremely lcngtl1y even apart from two other questions which 
arise; namely, which is the stable side of eacl1 boundary, and has the critical boundary been found which separates stable 
and unstable regions and thereby defines the tl1innest panel that is stable? In the present report,, therefore, the stability 
boundaries shown in figures 2 to 9 were calculated exclusively on the basis of the generalized-coordinate or modal approach. 
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APPENDIX B 

VELOCITY POTENTIAL +q AND RELATED INTEGRAL Fe 

VELOCITY POTENTIAL 6, 

The velocity potential 41 given in equation (9), which ap- 
plies to the lower surface of the two-dimensional panel 
shown in figure 1, will now bc drrivrd. The system consisk 
of n pnnrl of wirlUi c, whirh is pad of an ollirrwisr rigid 
siirfnrc of irifinit~c rstriil, osrillat.irig linrnionirnlly widi 
st#nt.ionnr.y nir cst,ru(ling t.0 infiuiL.y below. ‘Ihs, OVCI’ 
the panel the nornm.1 vrl0cit.y on thr lowrr surfncr is 
w~=icdz(x)f,iwt, wliilr ovrr thr rest of thr plenc w!=O. 

Arroidirig t)o rrfrrcnrr IO tlic solut inn to this problrm can 
1~ obtninr(l from 

ml) 

W~ICW w, is llir givril norm:d vrlocily at thr rlrmrt~t of nrrn 
dS of fhr planr nntl I$ is thr vr1ocit.v potrntid fit n, poiflt I’ 
whidl is nt n tlistnnrr I’ from c/S. From cquntiotl (Dl) tlic 
vrlocity polrlitinl nt thr surfarc of thr pnnrl mn,y Iw obtniiiccl, 
in trams of thr roonlillnlrs of figure 1, ns 

IJpon malting thr substitution ?I= [z-t! cdl 8, thr intrgrnl 
with Iqxrt to y it1 rqrlntion (B2) mn.y hc \vi*ittrn in thr 
form 

By mrn.ns of rquation (1 1 ) 011 pngr 180 of rrfcrmcr IO, 
cquntion (B3) hrromrs 

I(.r-Q= - i~El,(~) (5 b-t!) (B4) 

Substitution of rqunt.ion (B4) into cqua,tion (B2) yields 

(B5) 

If the coortlinutrs s rtutl 5 arc llo~ltlirnellsio~lalizc~tl by tlividiug 
by the panel chorcl c, ihr form for +1 given in equation (9) 
is obtainecl. 

INTEGRAL r=. 

Thr third trrm on thr right-bnntl sitlr of rquntion (22), 
nslmrly, 

(B6) 

contnins thr singulni4tg of tlir Ilarlkrl funct,ion iu rquntion 
(20). 

As a first step in the evaluation of the improper integral 
in equation (B6j, let 

+-cos {) 

.=$I -cos$) 

ant1 

(B7) 

m 
Z,,(t)= C S,,! sin 7n { 

‘,,I = I 
wl I (‘I’(’ 

IS,,, = 2 
\ 

‘T z,(r) x, ,I 
sin 7~1 { cl< 

uw 

wh rrr 

Taking thr drrirntivc of equation (1310) with uqxxt. to 
$ and making use of rrfrrrnrr 20 to rrn.luatr thr rrsulting 
improprr ititrgrnls yirlcls 

In trgration of rquntion (131 I) givrs 

I($)=; 
(B12) 

The integration constaut K in equation (B12) is cleterminecl 
by setting # rqual to a/2 iti rquations (BIO) ant1 (B12) and 
cqunting thr two resultnnt rsprrssions. By so doing, it is 
found tblnt 

(B13) 

By mrnns of rqunCons (B12) and (B13), cquntion (B9) 
brcomrs 
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The mode shapes 2, in equation (BG) are now npprosi- 
mated by the finite sine series 

Z,(E) = $sr sin TX 031% 

The constants S, in equation (B14) are obtained from the 
expression following equation (B8), with the result that 
equation (Bl4) can he written as 

wh cre 

7T,(J+-lO& y+; (‘OS 2yc 

E,(x)=,& cos (,.+l)$-,_li cos (r-l)+ (I’Z2) 

and, as in rquntion (RT), 

x=;(l -cos $l) 

(BIG) 

The form given in equation (B16) was used to obtain equa- 
tion (28). Of interest is the fact that only z, depends on k 
and M. The term p,, is therefore comparatively simple to 
include in equation (22). 

The cot8icient.s sr in equations (B15) and (Bl6) for the first 
four modes of the plate with clamped edges are given in the 
following table: 

Mode 1 Mode P Mode 3 1 Modr 4 
--- 

The cocfijcicrlts s,,, for the sccontl and fourth motlcs were 
obt,aincd bp forcing 111~ slope of Zn, as given b-y equation 
(BIG), to IW zero n.t #=0 (that is, al x=0). A similar t,able 
ran hc easily c&~la~tetl for the pinned-edge pln.te. 
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